

1. Background

The Zwicky Transient Facility (ZTF)^[1] • Optical time-domain survey with 47 deg² field-of-view

The Bright Transient Survey (BTS)^[2,3] • Spectroscopically classify all extragalactic transients with m < 18.5 mag from ZTF

• "Scanning": Manual inspection of candidate bright transients

Project Goals

C

Automate identification of bright transients to i. Streamline BTS workflow

ii. Collect very early supernovae spectra

"Policy": Map sequence of alert-based scores to source-based classification

gt1: Classify source as bright transient when ≥ 1 alert with score ≥ 0.5

sample when following BTSbot with gt1

Outperforming human scanners in completeness (99.1% to 95.2%) and speed (7.4 hours quicker)

BTSbot: A Multi-input CNN to Automate and **Expedite Bright Transient Identification for ZTF**

Nabeel Rehemtulla^{1,2}, Adam A. Miller^{1,2}, Michael Coughlin³, Theophile Jegou Du Laz⁴ on behalf of ZTF

¹Department of Physics and Astronomy, Northwestern University, ²Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) ³School of Physics and Astronomy, University of Minnesota, ⁴Division of Physics, Mathematics, and Astronomy, California Institute of Technology

7.4 hours \approx 1 night L 24-hour speed-up

Output: Unit interval bright transient score

5. SN2023ixf and extremely rapid follow-up

Relative f_{λ} + Constant	SEDMv2? +0.7d
	SPRAT +1.1d
	Kast +2.36d
	Kast +2.61d
	Kast +3.36d
	$= \underbrace{\operatorname{KOSMOS}_{\pm 3.41d}}_{\operatorname{HET}_{\pm 3.48d}}$
	$\frac{\text{Kast} + 4.39d}{\text{Kast} + 5.48d}$
	$\frac{\text{Kast}}{\text{Kast}} + 6.36d$
	<u>Kast</u> +8.38d Kast +10.58d
	Kast +11.41d Kast +12.35d
	Kast +13.36d Kast +14.42d
	4000 5000 6000 7000 8000 9000 10000
	Rest Wavelength (Å)

autoscan Check for new policy-passing sources during night Immediately save and request follow-up

- 00:45: ZTF detection

• Request spectrum from robotic spectrograph • 05:00: End of observing Earliest spectrum then 0.4 days earlier Probe physics that is otherwise inaccessible

Figure adapted from [6]

SN2023ixf discovery and follow-up

May 19th, 2023 (PDT) • 14:42: First TNS report^[4] • 15:23: First spectrum^[5] • BTSbot score=0.840 • 01:00: Seen by autoscan • Pass gt1, save source to BTS

References 1] Bellm, E. C. et al. 2019 2] Fremling, C. et al. 2020 B] <u>Perley, D. et al. 2020</u> 4] <u>Itagaki, 2023</u>] <u>Perley et al. 2023</u>

Jacobson-Galán, W. V. et al. 2023